A priori convergence of the Generalized Empirical Interpolation Method
نویسندگان
چکیده
In an effort to extend the classical lagrangian interpolation tools, new interpolating methods that use general interpolating functions are explored. The Generalized Empirical Interpolation Method (GEIM) belongs to this class of new techniques. It generalizes the plain Empirical Interpolation Method [1] by replacing the evaluation at interpolating points by application of a class of interpolating linear functions. Since its efficiency depends critically on the choice of the interpolating functions (that are chosen by a Greedy selection procedure), the purpose of this paper is therefore to provide a priori convergence rates for the Greedy algorithm that is used to build the GEIM interpolating spaces.
منابع مشابه
A weighted empirical interpolation method: a priori convergence analysis and applications
We extend the classical empirical interpolation method [1] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [13]. ...
متن کاملEXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can b...
متن کاملApproximation of Parametric Derivatives by the Empirical Interpolation Method
We introduce a general a priori convergence result for the approximation of parametric derivatives of parametrized functions. We consider the best approximations to parametric derivatives in a sequence of approximation spaces generated by a general approximation scheme, and we show that these approximations are convergent provided that the best approximation to the function itself is convergent...
متن کاملHierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques
In this paper we extend the hierarchical model reduction framework based on reduced basis techniques recently introduced in [46] for the application to nonlinear partial differential equations. The major new ingredient to accomplish this goal is the introduction of the adaptive empirical projection method, which is an adaptive integration algorithm based on the (generalized) empirical interpola...
متن کاملConvergence of Integro Quartic and Sextic B-Spline interpolation
In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...
متن کامل